

Journal of Organometallic Chemistry 493 (1995) C1-C5

Preliminary Communication

$In_4(C(SiMe_3)_3)_4$ mit In_4 -Tetraeder und $In_4Se_4(C(SiMe_3)_3)_4$ mit In_4Se_4 -Heterocubanstruktur

Werner Uhl *, Rene Graupner, Marcus Layh, Uwe Schütz

Fachbereich Chemie der Universität, Postfach 2503, D-26111 Oldenburg, Deutschland Eingegangen den 22. November 1994; in revidierter Form den 12. Dezember 1994

Abstract

The reaction of $In^{1}Br$ with LiC(SiMe₃)₃ · 2THF yields the In(I) alkyl In_{4} {C(SiMe₃)₃}₄ 1 in 70% yield. 1 was characterized by a crystal structure determination showing a nearly undistorted In_{4} tetrahedron with mean In–In distances of 300.2(1) pm. Reaction of 1 with elemental Se gives $In_{4}Se_{4}$ {C(SiMe₃)₃}₄ 2 with a slightly distorted $In_{4}Se_{4}$ hetero cubane structure.

Zusammenfassung

In¹Br reagiert mit LiC(SiMe₃)₃ · 2THF in 70% Ausbeute zu dem dunkelvioletten In(I)-Alkyl In₄{C(SiMe₃)₃}₄ 1. Die Kristallstrukturbestimmung ergibt einen nahezu unverzerrten Tetraeder aus vier Indiumatomen mit einem mittleren In-In-Abstand von 300.2(1) pm. Die Reaktion von 1 mit elementarem Selen führt zum In₄Se₄{C(SiMe₃)₃}₄ 2, das ein verzerrtes In₄Se₄-Heterokubangerüst aufweist.

Keywords: Indium; Tetrahedron; X-ray structure; Cluster; Selenium; Heterocubane

1. Ergebnisse und Diskussion

In jüngster Zeit bestand beträchtliches Interesse an der Synthese und strukturellen Charakterisierung von elementorganischen Verbindungen mit homoatomarem, polyedrischem Gerüst aus Elementen der dritten Hauptgruppe; Beispiele sind: $B_4(CMe_3)_4$ [1], $Al_4Cp_4^{\star}$ [2] $(Cp^{\star} = C_5 Me_5), K_2[Al_{12}iBu_{12}]$ [3] und $Ga_4(C-$ (SiMe₃)₃]₄ [4]. Für die schwereren Homologen In und Tl kennt man zwar schon länger Cyclopentadienide der einwertigen Elemente; sie bilden aber entweder Cyclopentadienyl-verbrückte eindimensionale Polymere [5] oder Pseudohexamere [6] und -dimere [7] mit nur schwacher Metall-Metall-Wechselwirkung [8]. Die Verbindung $Ga_4 \{C(SiMe_3)_3\}_4$ erhielten wir in unserer Arbeitsgruppe nach einer Disproportionierung in dunkelroten Kristallen bei der Umsetzung des Ga₂Br₄. 2Dioxan mit drei Äquivalenten $LiC(SiMe_3)_3$ [4]; an gleicher Stelle berichteten wir bereits darüber, daß auf

ähnlichem Weg aus dem $In_2Br_4 \cdot 2TMEDA$ ein In(I)-Derivat 1 zugänglich ist. Die aus üblichen Lösungsmitteln erhaltenen Kristalle von 1 besaßen aber eine so schlechte Qualität, daß außer der Zellmetrik, die derjenigen des Ga₄-Moleküls entspricht, keine Angaben zur Kristallstruktur möglich waren. Über ähnliche Erfahrungen berichtete später die Arbeitsgruppe von Cowley et al. [9], die bei dem Versuch einer Strukturbestimmung selbst das Indiumgerüst von 1 nur mit großer Unsicherheit bestimmen konnte.

Unter Verwendung von Diisopropylether erhielten wir jetzt Einkristalle von 1, die erstmals eine reguläre Kristallstrukturbestimmung erlaubten. Danach ergibt sich für 1 ein nahezu unverzerrter Tetraeder aus vier Indiumatomen (Abb. 1) mit nur wenig von 60° abweichenden In-In-In-Bindungswinkeln und In-In-Abständen von im Mittel 300.2(1) pm. Diese sind damit um 60-90 pm deutlich kürzer als in den Cyclopentadienyl-Verbindungen mit nur schwacher In-In-Wechselwirkung [6,7] und liegen in dem Bereich, den man auch in Clustern intermetallischer Phasen wie $K_8 In_{11}$ [10] beobachtet. In $R_2 In-InR_2$ -Verbindungen [11] treten In-In-Bindungslängen von 274-283 pm auf. Die auf die

^{*} Corresponding author.

3z-2e-Bindung im Tetraeder zurückzuführende Verlängerung des Element-Element-Abstandes in 1 um mehr als 17 pm wurde in gleicher Größenordnung auch beim Übergang von $R_2AI-AIR_2$ ($R = CH(SiMe_3)_2$) (AI-AI = 266.0 pm) [12] auf $AI_4Cp_4^{+}$ (AI-AI = 276.9 pm) [2] oder von $R_2Ga-GaR_2$ (Ga-Ga = 254,1 pm) [13] auf $Ga_4\{C(SiMe_3)_3\}_4$ (Ga-Ga = 268.8 pm) [4] beobachtet. Die In-C-Abstände sind gegenüber dem Standardwert von 218 pm auf im Mittel 224.9 pm verlängert.

Neben der oben genannten Synthese [4] erhielten wir 1 in schwarz-violetten Kristallen auch aus In¹Br [14] und $(Me_3Si)_3CLi \cdot 2THF$ [15] (Gl. 1) in Ausbeuten von 70% (ähnlich zu [9]).

InBr + LiC(SiMe₃)₃ · 2THF

$$\longrightarrow 1/4 \text{ In}_4 \{C(SiMe_3)_3\}_4 + \text{LiBr}$$
 (1)

1 zersetzt sich erst oberhalb von 180° C; an Luft tritt über Wochen keine Veränderung ein. Im Massenspektrum wird lediglich das Monomer beobachtet. Bei der kryoskopischen Molmassenbestimmung in Benzol erhält man unabhängig von der Konzentration bemerkenswerterweise die tetramere Formelmasse, während bei dem Ga₄-Derivat mit abnehmender Konzentration zunehmende Dissoziation bis zum Monomeren eintrat [4]. Die

S13.3

Abb. 1. Molekülstruktur von 1 (Schwingungsellipsoide mit 40% Wahrscheinlichkeit). Zur besseren Übersicht wurde auf die Wiedergabe der Methylkohlenstoffatome verzichtet. Ausgewählte Bindungslängen (pm) und -winkel (°): In1–In2 299.4(1), In1–In3 301.3(1), In1–In4 301.1(1), In2–In3 301.2(1), In2–In4 298.9(1), In3–In4 299,0(1), In1–C1 226(1), In2–C2 225(1), In3–C3 225(1), In4–C4 224(1), In2–In1–In3 60.19(3), In2–In1–In4 59.71(3), In3–In1–In4 59.53(3), In1–In2–In3 60.22(3), In1–In2–In4 60.44(3), In3–In2–In4 59.78(3), In1–In3–In2 59.59(3), In1–In3–In4, 60.21(3), In2–In3–In4 59.73(3), In1–In4–In2 59.86(3), In1–In4–In3 60.27(3), In2–In4–In3 60.49(3).

Abb. 2. Molekülstruktur von 2 (Schwingungsellipsoide mit 40% Wahrscheinlichkeit). Zur besseren Übersicht wurde auf die Wiedergabe der Methylkohlenstoffatome verzichtet. Ausgewählte Bindungslängen (pm) und -winkel (°): In1–Se1 266.4(2), In1–Se2 266.5(2), In1–Se3 267.1(2), In2–Se2 267.3(2), In2–Se3 266.4(2), In2–Se4 266.8(2), In3–Se1 267.3(2), In3–Se2 266.9(2), In3–Se4 267.1(2), In4–Se1 267.3(2), In4–Se3 268.1(2), In4–Se4 267.6(2), In1–C1 223(1), In2–C2 220(1), In3–C3 221(1), In4–C4 221(1), In–Se-In 84.94(4)–85.71(5) (MW: 85.37), Se–In–Se 94.07(5)–94.97(5) (MW: 94.95).

langwelligste UV-Absorption (487 nm mit Schulter bei 570 nm) ist gegenüber der analogen Galliumverbindung (435 nm) deutlich bathochrom verschoben.

In einem ersten Versuch zur chemischen Reaktivität setzten wir 1 mit Selen um (Gl. 2)

$$In_{4}\{C(SiMe_{3})_{3}\}_{4} + 4Se \longrightarrow In_{4}Se_{4}\{C(SiMe_{3})_{3}\}_{4}$$

$$(2)$$

und isolierten das In₄Se₄-Derivat 2 mit In-Se-Heterocubanstruktur [16]. 2 fällt in farblosen, luftstabilen Kristallen an und zersetzt sich erst oberhalb von 350°C unter Schwarzfärbung. Aufgrund der Schwerlöslichkeit gelang die kryoskopische Bestimmung der Molmasse in Benzol nicht. Im IR-Spektrum von 2 fehlt eine für 1 beobachtete starke Absorption bei 567 cm $^{-1}$, die damit möglicherweise einer Atmungsschwingung des In₄-Gerüsts zuzuordnen ist. Die Kristallstrukturbestimmung (Abb. 2) ergibt eine verzerrte Würfelstruktur mit alternierender Besetzung der Ecken durch Se und In, wobei man im Mittel In-Se-In-Winkel von 85.4° und Se-In-Se-Winkel von 94.4° mit jeweils nur sehr geringen Abweichungen erhält. Auch die In-Se-Bindungslängen schwanken nur wenig um den gemeinsamen Mittelwert von 267.1 pm und liegen im Bereich charakteristischer In-Se-Abstände zu vierfach koordinierten In-Atomen [17].

Tabelle 1

Ortskoordinaten und isotrope Auslenkungsparameter (10^{-22} m^2) für die Atome der asymmetrischen Einheit von 1. Die Numerierung der Atome ist der Abb. 1 zu entnehmen. Den Atomen des Ethermoleküls wurde zur Kennzeichnung der Buchstabe E angefügt

Atoms	x / a	y/b	z/c	$U_{ m eq}$
In1	0,25859(8)	0,11413(4)	0,13613(3)	4,88(2)
In2	0,25982(7)	0,28074(4)	0,14094(3)	4,93(2)
In3	0.25569(6)	0,19034(5)	0,22371(2)	4,85(2)
In4	0.43399(5)	0,19533(5)	0,16902(3)	4,74(2)
C1	0,204(1)	0.0144(7)	0,0988(4)	5,2(3)
Si11	0.2511(4)	0.0237(2)	0.0412(1)	6,9(1)
C111	0.253(2)	-0.067(1)	0.0103(5)	11.2(7)
C112	0.373(1)	0.062(1)	0.0392(6)	9,9(6)
C113	0.176(2)	0.091(1)	0.0083(6)	13.4(9)
Si12	0.2587(4)	-0.0692(2)	0.1277(1)	6.7(1)
C121	0.197(1)	-0.1597(8)	0.1155(7)	9,9(6)
C122	0.256(2)	-0.0577(9)	0.1886(5)	10,2(6)
C123	0.390(1)	-0.086(1)	0.1152(6)	10.2(6)
Si13	0.0697(3)	0.0152(2)	0.1032(2)	7.1(1)
C131	0.018(1)	0.1118(9)	0.0975(7)	10,1(6)
C132	0.010(1)	-0.046(1)	0.0607(7)	11.3(7)
C133	0.026(1)	-0.019(1)	0.1561(7)	11.0(7)
C2	0.2102(9)	0.3844(6)	0,1066(4)	4,4(3)
Si21	0.2423(3)	0.4647(2)	0.1442(1)	6.2(1)
C211	0.243(2)	0.5564(8)	0.1165(6)	9.8(6)
C212	0.361(1)	0.4533(8)	0.1707(6)	8.2(5)
C213	0.155(1)	0.474(1)	0.1917(5)	8,5(5)
Si22	0.0777(3)	0.3745(2)	0.0976(1)	6.1(1)
C221	0.048(1)	0.312(1)	0.0500(5)	9.4(5)
C222	0.015(1)	0.331(1)	0.1459(5)	8.8(5)
C223	0.016(1)	0.4653(9)	0.0854(6)	9.3(6)
Si23	0.2811(4)	0.3891(2)	0.0537(1)	7.2(1)
C231	0.223(2)	0.452(1)	0.0129(5)	11.1(7)
C232	0.294(1)	0.2960(9)	0.0267(5)	9.1(5)
C233	0.409(1)	0.421(1)	0.0615(6)	10,3(6)
C3	0.1964(8)	0.1897(8)	0.2921(3)	4,7(3)
Si31	0.0633(3)	0.2020(3)	0.2863(1)	6.5(1)
C311	0.031(1)	0.304(1)	0.2741(5)	9.2(5)
C312	-0,007(1)	0.174(1)	0,3360(5)	9,6(6)
C313	0,012(1)	0.150(1)	0,2401(6)	9,0(5)
Si32	0,2296(3)	0,0943(2)	0,3160(1)	7,2(1)
C321	0,222(2)	0,092(1)	0,3775(5)	10,1(6)
C322	0,353(1)	0.063(1)	0,3004(6)	10,8(7)
C323	0,147(1)	0,0179(9)	0,2970(6)	8,9(5)
Si33	0,2561(4)	0,2683(2)	0,3220(1)	7,1(1)
C331	0,189(2)	0,296(1)	0,3721(5)	11,0(7)
C332	0,269(2)	0,3532(9)	0,2879(6)	10,1(6)
C333	0,384(1)	0,246(1)	0,3382(5)	9,8(6)
C4	0,5952(7)	0,1952(7)	0,1722(4)	4,9(3)
Si41	0,6307(3)	0,2411(3)	0,2250(1)	6,3(1)
C411	0,760(1)	0,273(1)	0,2260(6)	9,8(6)
C412	0,553(1)	0,3233(8)	0,2378(5)	8,1(5)
C413	0,617(1)	0,177(1)	0,2737(5)	10,2(6)
Si42	0,6391(3)	0,2489(3)	0,1232(1)	6,2(1)
C421	0,635(1)	0,3534(8)	0,1304(6)	9,4(6)
C422	0,768(1)	0,228(1)	0,1069(5)	9,6(6)
C423	0,564(1)	0,229(1)	0,0736(4)	8,8(5)
Si43	0,6322(3)	0,0930(2)	0,1706(2)	6,5(1)
C431	0,761(1)	0,0769(8)	0,1896(6)	9,2(5)
C432	0,551(1)	0,0323(8)	0,2055(5)	7,9(5)
C433	0,625(1)	0,0529(9)	0,1144(6)	9,7(6)
OE1	0,484(1)	0,777(1)	0,0270(7)	16,1(7)
CE1	0,563(2)	0,803(2)	0,0085(8)	15(1)
CE11	0,549(3)	0,818(2)	-0,0372(9)	25(2)
CE12	0,599(2)	0,869(1)	0,0331(8)	16(1)

Fabelle	1	(Fortsetzung)	
---------	---	---------------	--

Atoms	x / a	y/b	z/c	$U_{ m eq}$
CE2	0,459(3)	0,708(1)	0,026(1)	16(1)
CE21	0,491(2)	0,656(2)	0,056(1)	18(1)
CE22	0,354(3)	0,702(2)	0,022(1)	26(2)

2. Experimentelle Einzelheiten

2.1. Synthese von 1

Zu einer Suspension von 1.36 g (6.98 mmol) In¹Br [14] in 20 ml Toluol tropft man unter Argon bei -- 30°C eine Lösung von 2.89 g (7.55 mmol) LiC(SiMe₃)₃. 2THF [15] in 50 ml Toluol. Unter Rühren läßt man auf Raumtemperatur erwärmen, filtriert vom ausgefallenen LiBr, wäscht den Niederschlag zweimal mit 20 ml n-Pentan und engt im Vakuum bis zur beginnenden Kristallisation ein. Bei -50° C kristallisieren schwarzviolette Kristalle von 1. Ausb.: 1.67 g (69%). Zers.-P. (unter Argon): 180°C. Molmasse (kryoskopisch in Benzol): gef. 1333, ber. 1385.6 g mol⁻¹. MS (70 eV): 346 $(5\%, 1/4 \text{ M}^+), 217 (100\%, \text{HC}(\text{SiMe}_3)_3 - \text{Me}).$ ¹H-NMR (C₆D₆): $\delta = 0.44$. ¹³C-NMR (C₆D₆): $\delta = 7.2$ (SiMe₃), 6.7 (InC). UV/Vis (*n*-Pentan): $\lambda_{max}(\varepsilon) = 250$ (78000), 282 (48000), 316 (76000), 487 (6000), 570 (900, Schulter) nm. IR (Nujol, CsBr-Platten, cm^{-1}): 1304 vw, 1291 vw, 1263 m, 1250 m δCH₃; 1169 vw, 1142 vw, 1078 vw, 1042 vw, 972 vw; 860 vs, 835 vs, 772 w, 731 sh, 723 w pCH₃; 673 w, 646 w, 613 vw ν SiC; 567 s, 523 vw, 463 vw ν GaC.

2.2. Synthese von 2

420 mg (0.303 mmol) 1 werden mit einem großen Überschuß Selen (400 mg, 5 mmol) in 75 ml *n*-Hexan 20 h unter Rückfluß erhitzt. Überschüssiges, äußerst fein verteiltes Selen läßt man absitzen und pipettiert die überstehende Lösung ab. Das Lösungsmittel wird im Vakuum abdestilliert und der Rückstand aus *n*-Pentan umkristallisiert. Ausb.: 310 mg (60%). Zers.-P. (unter Argon): 350°C. ¹H-NMR (C₆D₆): $\delta = 0.44$. ¹³C-NMR (C₆D₆): $\delta = 6.8$ (SiMe₃); InC nicht bestimmbar. UV/Vis (*n*-Pentan): λ_{max} (ε) = 276 (28000), 260 (26000) nm. IR (Nujol, CsBr-Platten, cm⁻¹): 1300 w, 1260 m, 1250 m δ CH₃; 1169 vw, 1155 vw, 1074 vw, 1040 vw, 972 vw; 858 vs, 841 vs, 777 w, 727 w ρ CH₃(Si); 679 w, 656 w, 604 w ν SiC; 525 vw, 463 vw ν InC.

2.3. Kristallstruktur von 1

Einkristalle von 1 aus Diisopropylether; die Kristalle schließen ein Molekül des Lösungsmittels ein, das sich vollständig anisotrop verfeinern ließ. $C_{46}H_{122}In_4OSi_{12}$; Vierkreisdiffraktometer Siemens AED 2; Mo-K α -Strahlung; 25°C; Programme SHELXTL PLUS REL 4.1 und

Tabelle 2 Ortskoordinaten und isotrope Auslenkungsparameter für die Atome der asymmetrischen Einheit (außer H) von 2. Die Kohlenstoffatome der Pentanmoleküle werden mit CP gekennzeichnet

Atoms	x / a	y / b	z/c	U _{eq}
Se1	0,07296(4)	0,12862(8)	0,16824(3)	4,55(3)
Se2	0,14124(4)	0,13069(8)	0,08245(3)	4,61(3)
Se3	0,19796(4)	0,01510(7)	0,17086(4)	4,52(3)
Se4	0,19103(4)	0,25998(7)	0,16894(4)	4,57(3)
ln1	0,11343(3)	0,01750(5)	0,12814(2)	4,32(2)
C1	0,0757(4)	-0,0996(7)	0,1081(4)	5,0(3)
Si11	0,0089(1)	-0.0790(2)	0,1092(1)	7,0(1)
C111	-0,0105(5)	0,0275(8)	0,0924(5)	8,2(5)
C112	-0,0079(5)	-0,085(1)	0,1575(5)	9,0(5)
C113	-0,0298(5)	-0,1552(9)	0,0793(5)	10,3(7)
Si12	0,0990(2)	-0,1846(2)	0,1409(1)	6,5(1)
C121	0,0557(6)	-0,2776(9)	0,1382(5)	9,0(5)
C122	0,1081(6)	-0,1509(9)	0,1890(4)	7,7(4)
C123	0,1599(5)	-0,2252(10)	0,1326(5)	9,6(6)
Si13	0,0904(2)	-0,1170(2)	0,0605(1)	6,3(1)
C131	0,0763(6)	-0,2281(8)	0,0448(4)	8,7(5)
C132	0,1563(5)	-0,0993(9)	0,0574(4)	8,1(5)
C133	0,0564(6)	-0,0466(9)	0,0265(4)	7,9(5)
In2	0,22265(3)	0,13856(5)	0,12879(2)	4,41(2)
C2	0,2938(4)	0,1457(7)	0,1097(4)	5,1(3)
Si21	0,3409(2)	0,1424(3)	0,1512(1)	5,9(1)
C211	0,4014(5)	0,1819(12)	0,1410(4)	9,3(6)
C212	0,3489(6)	0,0306(10)	0.1695(5)	9,9(6)
C213	0,3248(5)	0,2092(10)	0,1887(4)	8,1(5)
Si22	0,2987(2)	0,0536(3)	0,0782(1)	5,8(1)
C221	0,2780(5)	-0,0477(9)	0,0983(4)	7,8(5)
C222	0,2616(6)	0,0689(10)	0,0326(4)	9,4(5)
C223	0,3629(5)	0,0323(11)	0,0708(6)	11,1(7)
Si23	0,2957(2)	0,2493(3)	0,0842(1)	5,9(1)
C231	0,2369(5)	0,2717(9)	0,0556(4)	7,9(5)
C232	0,3076(7)	0,3393(9)	0,1177(5)	9,9(6)
C233	0,3424(5)	0,2489(12)	0,0525(4)	10,3(6)
In3	0,10736(3)	0,24310(5)	0,12587(3)	4,38(3)
C3	0,0638(4)	0,3520(7)	0,1048(4)	4,9(3)
Si31	0,0146(2)	0,3633(4)	0,1339(2)	6,5(2)
C311	-0,0107(6)	0,4755(10)	0,1317(5)	11,5(7)
C312	0,0333(6)	0,3473(9)	0,1832(4)	7,9(5)
C313	-0,0349(5)	0,2819(12)	0,1189(6)	13,6(9)
Si32	0,0396(3)	0,3277(4)	0,0549(2)	6,5(2)
C321	0,0188(6)	0,2210(9)	0,0470(5)	10,3(7)
C322	-0,0152(7)	0,3960(10)	0,0395(5)	11,8(7)
C323	0,0915(8)	0,3464(13)	0,0255(5)	16(1)
Si33	0,1061(2)	0,4454(4)	0,1083(2)	6,5(2)
C331	0,1662(5)	0,4258(9)	0,0963(5)	7,9(5)
C332	0,0790(7)	0,5310(9)	0,0745(6)	12,2(8)
C333	0,1131(6)	0,4836(10)	0,1582(6)	12,5(8)
In4	0,15956(3)	0,13591(5)	0,20810(2)	4,20(2)
0'41	0,1080(4)	0,1398(7)	0,2082(3)	4,4(3)
S141	0,2189(2)	0,0625(3)	0,2846(1)	0,4(1)
C411	0,1988(6)	-0,0486(8)	0,2794(4)	9,5(6)
C412	0,2433(0)	0,0792(11)	0,3340(4)	9,3(0) 0 1(5)
C413	0,2718(5)	0,0700(11) 0.1058(2)	0,2397(4)	9,1(3)
014Z	0,1091(2)	0,1038(3)	0,2033(1) 0.2575(4)	0, 7(1)
C421	0,0013(3)	0,0130(10) 0,1034(13)	0,2373(4)	0,0(<i>3)</i> 10,8(7)
C422	0,0031(3) 0.1152(4)	0,1924(12)	0,2703(3)	10,0(<i>1</i>) 0 1(6)
C423 Si42	0,1133(0)	0,073(1) 0.2505(2)	0,3330(4)	67(1)
C431	0,1047(2)	0,2303(2) 0.2747(10)	0,202+(1) 0.2766(4)	95(6)
C432	0,2400(0)	0,2709(10)	0.3318(4)	9.8(6)
C433	0,1471(7)	0,3295(9)	0,2555(4)	9,2(6)
	-,	, (

Tabelle 2 (Fortsetzung)

Atoms	x / a	y/b	z/c	$U_{ m eq}$
Si21' a	0,3311(8)	0,220(1)	0,1417(6)	5,9(6)
Si22'	0,3199(8)	0,032(1)	0,1158(7)	6,2(6)
Si23'	0,2825(9)	0,178(1)	0,0624(7)	6,8(6)
Si31′ ^b	0,0511(4)	0,4152(7)	0,1463(3)	6,0(3)
Si32'	0,1019(4)	0,4168(7)	0,0763(3)	6,1(3)
Si33'	0,0071(5)	0,3109(8)	0,0777(4)	7,4(4)
CP1	0,302(2)	-0,143(3)	-0,029(1)	30(2)
CP2	0,247(3)	-0,133(4)	-0,050(2)	42(4)
CP3	0,209(3)	-0,163(5)	-0,056(2)	39(4)
CP4	0,155(3)	-0,172(4)	-0,058(2)	47(5)
CP5	0,168(2)	-0,076(3)	-0,057(2)	37(3)
CP6	0,469(3)	0,022(6)	0,249(2)	25(4)
CP7	0,5000	0,076(11)	0,2500	48(9)
CP8	0,469(4)	0,125(6)	0,261(3)	29(5)
CP9	0,5000	0,187(7)	0,2500	40(6)
CP10	0,477(2)	0,271(4)	0,244(2)	23(3)

^a Fehlgeordneter C(SiMe₃)₃-Rest; Besetzungsfaktor: 0,18.
 ^b Fehlgeordneter C(SiMe₃)₃-Rest; Besetzungsfaktor: 0,35.

SHELXL-93; orthorhombisch; $P2_12_12_1$ (Nr. 19); a = 1388.0(1) pm, b = 1794.6(2) pm, c = 3065.3(3) pm; V = 7635 Å³; Z = 4; $d_{calc} = 1.294$ g cm⁻³; $\mu = 1.41$ mm⁻¹; empirische Absorptionskorrektur; Kristallabmessungen: $0.4 \times 0.5 \times 0.5$ mm; $\omega - 2\Theta$ -scan; Meßbereich: $3 \le 2\Theta \le 48^{\circ}$; 6591 unabhängige Reflexe; 4824 Reflexe $F > 4\sigma(F)$; 609 Parameter; R = 0.046und $wR^2 = 0.132$ (alle Meßwerte); max. Restelektronendichte: $0.79 \cdot 10^{30}$ e m⁻³; Ortskoordinaten: Tabelle 1 [18].

2.4. Kristallstruktur von 2

Einkristalle von 2 aus n-Pentan; die Kristalle schließen 1.5 Moleküle des Lösungsmittels je Formeleinheit ein, von denen eines über eine zweizählige kristallographische Drehachse stark fehlgeordnet ist. Zwei der C(SiMe₃)₃-Reste sind über zwei Positionen fehlgeordnet. $C_{47.5}H_{123}In_4Se_4Si_{12}$; Vierkreisdiffraktometer Siemens AED 2; Mo K α -Strahlung; 25°C; Programme SHELXTL PLUS REL 4.1 und SHELXL-93; monoklin; C2/c (Nr. 15); a = 2798.4(6) pm; b =1601.4(4) pm; c = 3707.0(9) pm; $\beta = 97.44(3)^{\circ}$; V =16473 Å³; Z = 8; $d_{calc} = 1.445$ g cm⁻³; $\mu = 3.07$ mm⁻¹; empirische Absorptionskorrektur; Kristallabmessungen: $0.2 \times 0.5 \times 0.5$ mm; $\omega - 2\Theta$ -scan; Meßbereich: $3 \le 2\Theta \le 48^{\circ}$; 12843 unabhängige Reflexe; 7071 Reflexe $F > 4\sigma(F)$; 620 Parameter; R =0.073 und $wR^2 = 0.203$ (alle Meßwerte); max. Restelektronendichte: 1.8×10^{30} e m⁻³ im Bereich der Se-Atome: Ortskoordinaten: Tabelle 2 [18].

Dank

Unser Dank gilt der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für großzügige finanzielle Unterstützung. Herrn Prof. Dr. S. Pohl und Herrn W. Saak danken wir für die Aufnahme der Datensätze am Diffraktometer.

Literatur und Bemerkungen

- [1] T. Mennekes, P. Paetzold, R. Boese und D. Bläser, Angew. Chem., 103 (1991) 199.
- [2] C. Dohmeier, C. Robl, M. Tacke und H. Schnöckel, Angew. Chem., 103 (1991) 594. Siehe auch: N. Wiberg, in A.B. Bassindale und P.P. Gaspar (Hrsg.), Frontiers in Organosilicon Chemistry, The Royal Society of Chemistry, Cambridge, 1991, S. 263 ff; E.P. Schram und N. Sudha, Inorg. Chim. Acta, 183 (1991) 213.
- W. Hiller, K.-W. Klinkhammer, W. Uhl und J. Wagner, Angew. Chem., 103 (1991) 182. ESR-spektroskopisch wurde das Al₆(CMe₃)₆-Radikalanion nachgewiesen: C. Dohmeier, M. Mocker, H. Schnöckel, A. Lötz, U. Schneider und R. Ahlrichs, Angew. Chem., 105 (1993) 1491.
- [4] W. Uhl, W. Hiller, M. Layh und W. Schwarz, Angew. Chem., 104 (1992) 1378. Siehe auch: O.T. Beachley, Jr., J.C. Pazik und M.J. Noble, Organometallics, 13 (1994) 2885.
- [5] O.T. Beachley, Jr., J.C. Pazik, T.E. Glassman, M.R. Churchill, J.C. Fettinger und R. Blom, Organometallics, 7 (1988) 1051; E. Frasson, F. Menegus und C. Panattoni, Nature, 199 (1963) 1087. Siehe auch: M. Scholz, M. Noltemeyer und H.-W. Roesky, Angew. Chem., 101 (1989) 1419; M. Veith und K. Kunze, Angew. Chem., 103 (1991) 92. Ga^ICp: D. Loos, H. Schnöckel, J. Gauss und U. Schneider, Angew. Chem., 104 (1992) 1376; D. Loos und H. Schnöckel, J. Organomet. Chem., 463 (1993) 37.
- [6] O.T. Beachley, Jr., M.R. Churchill, J.C. Fettinger, J.C. Pazik und L. Victoriano, J. Am. Chem. Soc., 108 (1986) 4666.
- H. Schumann, C. Janiak, F. Görlitz, J. Loebel und A. Dietrich, J. Organomet. Chem., 363 (1989) 243; H. Schumann, C. Janiak, J. Pickardt und U. Börner, Angew. Chem., 99 (1987) 788.
- [8] C. Janiak und R. Hoffmann, J. Am. Chem. Soc., 112 (1990) 5924.
- [9] R.D. Schluter, A.H. Cowley, D.A. Atwood, R.A. Jones und J.L. Atwood, J. Coord. Chem., 30 (1993) 25.

- [10] W. Carillo-Cabrera, N. Caroca-Canales und H.G. von Schnering, Z. Anorg. Allg. Chem., 620 (1994) 247; S.C. Sevov und J.D. Corbett, Z. Anorg. Allg. Chem., 619 (1993) 128; S.C. Sevov und J.D. Corbett, J. Am. Chem. Soc., 115 (1993) 9089; S.C. Sevov und J.D. Corbett, Inorg. Chem., 30 (1991) 4875.
- [11] W. Uhl, M. Layh und W. Hiller, J. Organomet. Chem., 368 (1989) 139; R.D. Schluter, A.H. Cowley, D.A. Atwood, R.A. Jones, M.R. Bond und C.J. Carrano, J. Am. Chem. Soc., 115 (1993) 2070.
- [12] W. Uhl, Z. Naturforsch., B 43 (1988) 1113.
- [13] W. Uhl, M. Layh und T. Hildenbrand, J. Organomet. Chem., 364 (1989) 289.
- [14] T. Staffel und G. Meyer, Z. Anorg. Allg. Chem., 552 (1987) 113.
- [15] A.H. Cowley, N.C. Norman, M. Pakulski, G. Becker, M. Layh, E. Kirchner und M. Schmidt, *Inorg. Synth.*, 27 (1990) 235.
- [16] Neuere Beispiele für vergleichbare Heterokubane mit Al und Ga: S. Schulz, M. Andruh, T. Pape, T. Heinze, H.W. Roesky, L. Häming, A. Kuhn und R. Herbst-Irmer, Organometallics, 13 (1994) 4004; S. Schulz, H.W. Roesky, H.J. Koch, G.M. Sheldrick, D. Stalke und A. Kuhn, Angew. Chem., 105 (1993) 1828; M.B. Power, J.W. Ziller, A.N. Tyler und A.R. Barron, Organometallics, 11 (1992) 1055; K. Niediek und B. Neumüller, Chem. Ber., 127 (1994) 67.
- [17] K. Merzweiler, F. Rudolf und L. Brands, Z. Naturforsch., B 47 (1992) 470; O.T. Beachley, Jr., S.H.L. Chao, M.R. Churchill und C.H. Lake, Organometallics, 12 (1993) 5025; O.T. Beachley, Jr., J.C. Lee, H.J. Gysling, S.H.L. Chao, M.R. Churchill und C.H. Lake, Organometallics, 11 (1992) 3144; T.A. Annan, R. Kumar, H.E. Mabrouk, D.G. Tuck und R.K. Chadha, Polyhedron, 8 (1989) 865; S. Saluschke, M. Pink, W. Dietzsch, R. Kiermse und N. Law, Z. Anorg. Allg. Chem., 619 (1993) 1862; M.G. Kanatzidis und S. Dhingra, Inorg. Chem., 28 (1989) 2024; S.S. Dhingra und M.G. Kanatzidis, Inorg. Chem., 32 (1993) 1350. Kürzere Abstände in: K. Ruhlandt-Senge und P.P. Power, Inorg. Chem., 32 (1993) 3478.
- [18] Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationsdienst Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummern CSD-401580(1) und 401579(2), der Autoren und des Zeitschriftenzitats angefordert werden.